DESCRIPTION OF THE COURSE OF STUDY

Course code		0531-2CHEM-C13-PCK			
Name of the course in	Polish	Podstawy chemii kwantowej			
	English	Introduction to quantum chemistry			

1. LOCATION OF THE COURSE OF STUDY WITHIN THE SYSTEM OF STUDIES

1.1. Field of study	Chemistry
1.2. Mode of study	Full-time studies
1.3. Level of study	First-cycle studies
1.4. Profile of study*	General academic
1.5. Person/s preparing the course description	Dr. hab. Pawel Rodziewicz, Assoc. Prof.
1.6. Contact	pawel.rodziewicz@ujk.edu.pl

2. GENERAL CHARACTERISTICS OF THE COURSE OF STUDY

2.1. Language of instruction	English
2.2. Prerequisites*	Completed course in mathematics and physics

3. DETAILED CHARACTERISTICS OF THE COURSE OF STUDY

3.1. Form of classes			Lectures, exercises		
3.2. Place of classes			Classes in the teaching room of the UJK		
3.3. Form of assessment		nent	Lecture - exam, seminar- credit with grade		
3.4. Teaching methods		ods	Lecture, discussion		
3.5.	5. Bibliography Required reading		"Introduction to Quantum Mechanics" D. J. Griffiths and D. F. Schroe-		
			ter, Cambridge University Press, Third Edition 2018		
	Further reading		"Principles of Quantum Mechanics" R. Shankar, Springer, Second Edi-		
			tion 1995		

4. OBJECTIVES, SYLLABUS CONTENT AND INTENDED LEARNING OUTCOMES

4.1. Course objectives (including form of classes) LECTURE

The aim of the lecture is to present the basic issues related to quantum mechanics needed for chemists.

SEMINAR

The aim of the seminar is to solve tasks and problems related to the content introduced during the lecture.

4.2. Detailed syllabus (including form of classes)

Lecture:

Physical construct of quantum mechanics. Postulates of quantum mechanics. Wave function. Operators. Schrödinger equation. Eigenfunctions and eigenvalues. Expectation value of the observable. Free particle. Particle in a box. Rigid rotor. Harmonic oscillator. Tunnelling effect. Schrödinger equation for hydrogen and hydrogen-like atoms. Perturbation theory. Variational principle. Electronic correlation. Born-Oppenheimer approximation. Spin. Pauli exclusion principle. Molecular orbital theory.

Seminar:

Equation of wave function. Calculation of wavelength and frequency. Operators and their acting on wave function. Commutator of two operators. Conditions for linearity of an operator. Hermiticity of operators. Normalization factor of a wave function. Wave function orthogonalization. Calculation of quantum mechanical probability density of an electron. Pauli spin matrices. Calculation of transmission coefficient for a particle tunneling through a single potential barrier. Analysis of eigenfunctions of harmonic oscillator. Solving Schrödinger equation - particle in a box. Calculation of energy levels utilizing the Hückel molecular orbital theory.

4.3 Intended learning outcomes

Code	A student, who passed the course	Relation to learning outcomes				
	within the scope of KNOWLEDGE :					
W01	Student knows postulates of quantum mechanics	CHEMIA_W10				
W02	Student knows harmonic oscillator Schrödinger equation	CHEMIA_W10				
	within the scope of ABILITIES:					
U01	Student can calculate normalization factor of a wave function	CHEMIA_U08				
U02	Student can calculate commutator of two operators	CHEMIA_U08				
U03	Student can solve Schrödinger equation for a free particle	CHEMIA_U08				
within the scope of SOCIAL COMPETENCE:						
K01	Student is aware of the importance of quantum chemistry and is aware of the need to constantly acquire knowledge and skills related to the work of a chemist	CHEMIA_K01				

4.4. Methods of assessment of the intended learning outcomes									
	Method of assessment (+/-)								
Teaching	Exam written			Test			Effort in class*		
(code)	Form of classes			Form of classes			Form of classes		
	L	Ε		L	Ε		L	Ε	
W01	+								
W02	+								
U01	+				+				
U02	+				+				
U03	+				+				
K01								+	

4.5. Criteria of assessment of the intended learning outcomes				
Form of classes	Grade	Criterion of assessment		
	3	Written exam, 50-60% points		
: (L) ng e ng)	3,5	Written exam, 61-70% points		
ure udi rnii	4	Written exam, 71-80% points		
lect incl	4,5	Written exam, 81-90% points		
)	5	Written exam, 91-100% points		
in- ing)	3	Credit with grade - test, 50-60% points		
)* (arn	3,5	Credit with grade - test, 61-70% points		
s (C e-le	4	Credit with grade - test, 71-80% points		
sses ling	4,5	Credit with grade - test ,81-90% points		
cla	5	Credit with grade - test, 91-100% points		
ڊ e-	3	Credit with grade - test, 50-60% correct answers		
rs () ⁴ ding e-l ning)	3,5	Credit with grade - test, 61-70% correct answers		
	4	Credit with grade - test, 71-80% correct answers		
othe nclu ai	4,5	Credit with grade - test, 81-90% correct answers		
(i)	5	Credit with grade - test, 91-100% correct answers		

5. BALANCE OF ECTS CREDITS – STUDENT'S WORK INPUT

	Student's workload			
Category	Full-time	Extramural studies		
	studies			
NUMBER OF HOURS WITH THE DIRECT PARTICIPATION OF THE TEACHER	45			
/CONTACT HOURS/				
Participation in lectures	20			
Participation in seminars	25			
INDEPENDENT WORK OF THE STUDENT/NON-CONTACT HOURS/	55			
Preparation for the lecture	10			
Preparation for the seminars	25			
Preparation for the exam	20			
TOTAL NUMBER OF HOURS	100			
ECTS credits for the course of study	4			

Accepted for execution (date and legible signatures of the teachers running the course in the given academic year)

.....