DESCRIPTION OF THE COURSE OF STUDY

Course code	0532-2CHEM-C05-CF					
Name of the course in	Polish	Chemia fizyczna				
	English	Physical Chemistry				

1. LOCATION OF THE COURSE OF STUDY WITHIN THE SYSTEM OF STUDIES

1.1. Field of study	Chemistry		
1.2. Mode of study Full-time studies			
1.3. Level of study	First-cycle studies		
1.4. Profile of study*	General academic		
1.5. Person/s preparing the course description	prof. dr hab. Piotr Słomkiewicz,		
	dr Katarzyna Jedynak		
1.6. Contact	piotr.słomkiewicz@ujk.edu.pl		
	katarzyna.jedynak@ujk.edu.pl		

2. GENERAL CHARACTERISTICS OF THE COURSE OF STUDY

2.1. Language of instruction	English		
2.2. Prerequisites*	mathematics, physics, basics of chemistry		

3. DETAILED CHARACTERISTICS OF THE COURSE OF STUDY

V BETTHEED CHANGED THE COUNCE OF STOP							
3.1. Form of classes		Lectures, laboratory exerices, seminar					
3.2. Place of classes		Classes in the teaching room of the UJK					
3.3. Form of assessm	nent	Lecture - exam, laboratory exercises and seminar - credit with grade					
3.4. Teaching metho	ods	Lecture, use of audiovisual resources, discussion, demonstration					
		Seminar, solving tasks and problems					
		Laboratories, independent experiments					
3.5. Bibliography	Required reading	1. Peter Atkins, Julio De Paul, James Keeler, Physical Chemistry, Ox-					
		ford University Press, 2022					
		2. Finn Miller, Physical Chemistry, Willford Press 2017					
		3. Langdon Jamie, Physical Chemistry and Its Applications, Willford					
		Press 2017					
	Further reading	Hofmann Andreas, Physical Chemistry Essentials, Springer International					
		Publishing AG 2018					

4. OBJECTIVES, SYLLABUS CONTENT AND INTENDED LEARNING OUTCOMES

4.1. Course objectives (including form of classes)

Lecture:

- C1. Teaching the student basic issues of physical chemistry
- C2. Understanding the relationship between physicochemical laws and specific problems

Seminar:

- C3. Ability to apply basic calculation methods to typical physical chemistry problems
- C4. Acquiring the ability to independently solve physicochemical tasks and problems

Laboratory exercises:

- C5. The student can perform laboratory tasks independently and correctly prepare measurement results
- C6. Principles of operation and operation of basic physicochemical equipment
- C7. Ability to analyze the results obtained during measurements

4.2. Detailed syllabus (including form of classes)

Lecture:

- 1. States of matter and properties of gases.
- 2. Description of the states of matter. Equation of state. Gas mixtures and partial pressures. Gas kinetic theory. Real gases.
- 3. Thermodynamics; first rule.
- 4. The law of conservation of energy. Internal energy. Enthalpy.
- 5. Thermodynamics; second rule.
- 6. Entropy. Free enthalpy. Reactions at equilibrium.
- 7. Phase equilibria.
- 8. Phase diagrams of pure substances. Properties of non-electrolyte solutions. Phase diagrams of two-component systems.
- 9. Chemical balance.

- 10. Interpretation of equilibrium states. Acids and bases. Solubility balance.
- 11. Electrochemistry.
- 12. Galvanic cells. Applications reduction potential.
- 13. Chemical kinetics.
- 14. Empirical chemical kinetics. Justification of kinetic equations. Explosive reactions.
- 15. Chemical bonding.
- 16. Theory of valence bonds. Molecular orbitals. Band theory of solids.

Seminar:

Calculation methods used in typical tasks in the field of physical chemistry: calculation of thermodynamic functions and thermal effects of transformations, including chemical transformations (Hess's law and Kirchoff's law), thermodynamic description of the state of chemical equilibrium and phase equilibrium, parameters affecting the state of equilibrium, phenomena occurring at the phase boundary, determining the rate of a chemical reaction, the order of the reaction, the influence of temperature on the rate of a chemical reaction, description of electrode phenomena, calculation of EMF.

Laboratory exercises:

During experiments, the student performs laboratory exercises in the following branches of physical chemistry: thermodynamics (e.g. determination of partial molar quantities), thermochemistry (calorimetric measurements), transport processes (e.g. liquid viscosity), phase equilibria, equilibria in electrolyte solutions, interfacial phenomena (e.g. surface tension), electrochemistry (e.g. electrolysis), kinetics and catalysis. The student learns the basics of operation and operation of such basic devices as: calorimeter, conductivity meter, pH meter, electrolyzer, viscometer, tensionmeter, specol.

4.3 Intended learning outcomes

Code	A student, who passed the course	Relation to learning outcomes
	within the scope of KNOWLEDGE :	
W01	Characterizes and describes states of matter. Defines state functions.	CHEM1A_W05
	Correctly interprets equilibrium constants. Justifies kinetic equations.	
W02	Understands the basic relationships in physical chemistry and the scope of their appli-	CHEM1A_W05
	cation. Knows the basic computational methods used in physical chemistry.	
	within the scope of ABILITIES:	
U01	Describes, interprets and classifies laws and relationships in the field of physical chem-	CHEM1A_U01
	istry.	
U02	Is able to solve specific tasks from individual branches of physical chemistry. Exercises caution in laboratory work.	CHEM1A_U01
U03	Student can analyze the obtained results in terms of their probability and theoretical data found in the literature	CHEM1A_U11
U04	Is able to learn independently, present issues in physical chemistry clearly and prepare written works on laboratory exercises performed	CHEM1A_U11
U05	Able to work in a group, develops self-control through punctuality and responsibility	CHEM1A_U14
	within the scope of SOCIAL COMPETENCE :	
K01	Is aware of the critical assessment of his knowledge	CHEM1A_K01

	Metl	Method of verification (+/-)										
Teaching outcomes (code)	Exai ten*	Exam oral/writ- ten* Form of classes			Test*		Project*		Group work* Form of classes			
	Form				Form of classes			Form of classes				
	W	С		W	K	L.	W	K	L	W	K	L
W01	+				+	+						
W02	+				+	+						
U01												+
U02					+							+
U03					+	+			+			+
U04					+	+			+			+
U05					+				+			
K01	+											

^{*}delete as appropriate

4.5. Crit	eria of a	ssessment of the intended learning outcomes
Form of classes	Grade	Criterion of assessment
) e-	3	Exam - test, 51-60% correct answers
ng ong)	3,5	Exam - test, 61-70% correct answers
ure udi) rni)	4	Exam - test, 71-80%correct answers
lecture (L including learning)	4,5	Exam - test, 81-90%correct answers
Ĺ Ü	5	Exam - test, 91-100% correct answers
arn	3	Credit with grade - test, 51-60% correct answers
ar e-le	3,5	Credit with grade - test, 61-70% correct answers
Seminar including e-learn ing)	4	Credit with grade - test, 71-80% correct answers
Se. udi i	4,5	Credit with grade - test ,81-90% correct answers
incl	5	Credit with grade - test, 91-100% correct answers
s . J.	3	Credit with grade - test, 51-60% correct answers
tory ses ag e	3,5	Credit with grade - test, 61-70% correct answers
aborator exercises icluding	4	Credit with grade - test, 71-80% correct answers
Laborator exercises (including	4,5	Credit with grade - test, 81-90% correct answers
I (i	5	Credit with grade - test, 91-100% correct answers

5. BALANCE OF ECTS CREDITS – STUDENT'S WORK INPUT

	Student's workload			
Category	Full-time studies	Extramural studies		
NUMBER OF HOURS WITH THE DIRECT PARTICIPATION OF THE TEACHER /CONTACT HOURS/	165	95		
Participation in lectures	60	30		
Participation in seminars	45	30		
Participation in laboratories	60	35		
INDEPENDENT WORK OF THE STUDENT/NON-CONTACT HOURS/	135	205		
Preparation for the seminars, laboratories	50	60		
Preparation for the lecture and exam	40	60		
Preparation of reports	45	85		
TOTAL NUMBER OF HOURS	300	300		
ECTS credits for the course of study	12	12		

Accepted for execution (date and legible signatures of the teachers running the course in the given academic	ear
--	-----